Soft Meditation, first prototype

For the past couple of weeks I have been working on the first version of my Soft Meditation piece. This is a performance in which I meditate and live data is transformed into an animated, artistic visualisation.

Soft Meditation Performance photograph by Kristin Neidlinger

Soft Meditation Performance photograph by Kristin Neidlinger

Background

For the past year I have been developing, together with a team, Meditation Lab Experimenter Kit. A tool-kit that consists of a suit with sensors and software which allows you to monitor and optimise you meditation practice through self-experimentation and interaction with the environment.
Soft Meditation is the first application made with this tool-kit. It uses the API to create generic imagery from live sensor data collected with the suit. My aim is to explore whether donating personal data can create a positive, meditative effect in others even though they aren’t meditating themselves.

Why soft?

The title of the performance refers to the environmental psychology term soft fascination coined by Kaplan and Kaplan as part of their attention restoration theory. In my own words: the theory describes how looking at natural phenomena like waves on the water captures your attention without causing any cognitive strain. That way the mind can restore and refresh. Meditation is all about attention and I am looking for an easy way to capture the visitors attention and take them to a place of calm.
Trying to do this with meditation is, despite of popular belief, quite hard work. So soft also refers to the gentle and playful way in which, I hope, a meditative state of mind is achieved.

Inspiration For Soft Meditation

Inspiration For Soft Meditation

How soft?

But how do I capture attention in a way that is calming and uplifting? I’ve read some articles (view references below) about the affective properties of motion graphics and compiled an inventory of effects. For my goal it would be best to use slow, linear motion from left to right. I could then play with speed and waviness to create more intensity and interest depending on the sensor data in direct input.

Prototype design

For years I’ve been thinking about expressing my inner meditation state through a water metaphor. Movement of water is endlessly fascinating and mysterious and to my mind perfectly suited for my intentions. I looked for inspiration online which set the boundaries for which software environment to choose.
After exploring various platforms, languages and libraries I ended up with good old Processing as a platform. I found this sketch online which offered a nice starting point to build on. I started modifying it.

Exploring the Box Waves Processing sketch

Exploring the Box Waves Processing sketch


Considering I wanted a complex and lively wave animation I choose pitch (nodding movement of the head), breathing (top and bottom), finger pressure and heart-rate as input sensors.
SoftMed Prototype

Interaction with the audience

I have been thinking about how to make the performance multi-directional. I wanted to somehow include the audience into what is happening on the screen. What both me and the audience share are the sounds in the room. I decided to use the marker button provide with the suit to change the animation speed depending on the loudness of the sounds. Over time the audience would notice the relation between speed and sounds was my idea.

The first performance

I was invited to give a short presentation at the Human-Technology Relations: Postphenomenology and Philosophy of Technology conference at the University of Twente. Instead of a talk I decided I would test my prototype. I could only last for 5 minutes. I had programmed the sound of a bell at the beginning and end. I was facing the wall while the audience looked at a big screen over my head.


I was a bit nervous on how it would be to meditate in front of some 30 strangers. But once I sat down it was just like I always do: notice my body (pounding heart) and mind.

I was less pleased with the demo effect. One sensor was not working properly (I still don’t know why). This created hard-edged shapes and motions from right to left the exact opposite of the intended animation.

I tried pressing the marker button when I heard something. But as the performance progressed the room became more and more silent. Which I suppose is a sign that it worked but not something I had counted on.

Measurements

I am of course interested in the effects of the performance. I supplied the audience with the Brief Mood Introspection Scale (BMIS). Four sub-scores can be computed from the BMIS: Pleasant Unpleasant, Arousal-Calm, Positive-Tired and Negative-Relaxed Mood. I asked to fill them in before (baseline) and after the performance. 10 questionnaires were returned of which 6 were complete and correct. I am working on the results and will report on them in a later post.

Reactions

I was pleased to hear that people were fascinated by the wave and tried to work out what it signified. People found the performance interesting and aesthetically pleasing. We discussed what caused the effects: the context, the staging of me sitting there and people wanting to comply, the animation or the silence? A lot of things to explore further!
One participant came up to me later and explained how much impact the performance had on him. He found it very calming. “Everything just dropped from me” he explained. It also made him think about silence in his life and looking inward more. This is all I can hope to achieve. I continue my research with new energy and inspiration.

The next version of the performance will be on show during the biggest knowledge festival of south Netherlands (het grootste kennisfestival van zuidnederland) in Breda on September 13th.

References
- Feng, Chao & Bartram, Lyn & Gromala, Diane. (2016). Beyond Data: Abstract Motionscapes as Affective Visualization. Leonardo. 50. 10.1162/LEON_a_01229.
- Lockyer, Matt, Bartram Lyn. (2012). Affective motion textures. Computers & Graphics
- K Piff, Paul & Dietze, Pia & Feinberg, Matthew & Stancato, Daniel & Keltner, Dacher. (2015). Awe, the Small Self, and Prosocial Behavior. Journal of personality and social psychology. 108. 883-899. 10.1037/pspi0000018.

Putting it to the test

Experiment at Makersbase

Last week was very exciting. I put my system to the test during group experiments. I did 10 sessions in total at three different locations and gathered data from 23 different participants. People could register for beginner or advanced sessions with consisted of 20 or 60 minutes of meditation respectively.

New for me was working with Eventbrite. Through this system participants could register and select the appropriate suit size (only 5 suits were available in 3 sizes). I am very pleased at how this went. People could interact with me through the platform and it was easy to change orders. Some participants couldn’t make it but all graciously let me know in time.

Setting up experiments
experimenten2Simon from Protospace had worked very hard to get the system ready for conducting the group experiments. I can now register users. The system creates a unique random ID allowing users to take part anonymously. Suits can be added and named.
Every time I want to experiment I create meditation session (duration, actuation). To this session I add users, assign suits to users.
Create experiment (name, comment), add sessions to experiment and see completed and incomplete experiments.
The starting and stopping of a session goes through the server with a nice bell sounding at the beginning and end. This also automatically starts and stops the logging of data.
Each user can fill in their own form through a dedicated URL which is available as long as a session is active. Eventually we want all users to be able to use their own device to fill out the forms but at the moment the style sheet isn’t compatible with every device.

User experiences
suit Fitting
Suit
I was very happy to see that users love the look of the suits, many selfies were taken. It wasn’t a surprise that people found the suit comfortable to wear. Vera de Pont and I spend many hours optimising the fit of and interaction with the suit. The hood was used quite often for a feeling of privacy and safety. The hood also provides warmth which is nice when sitting still. People felt that the hood made it easier to turn inwards.
Some people did have a problem with the collar. It is made of soft, flexible fabric and designed to fit snugly around the neck. The close fit will ensure that even the tiniest movements are captured. But even when the collar is fastened less tightly the data is comparable to the tight fit.
Lose collar data

Meditation
Meditation with lightThe sessions could be conducted as normal meditation sessions. As an observer it struck me how peaceful they were. There wasn’t more movement or restlessness then in any other meditation session. The technology did not seem to interfere with the meditation.

Qualitative data
Filling in the formsFilling in the questionnaires was a bit of a hassle due to issues explained above. I have worked mostly with 2 laptops which could be used by the participants during walking meditation. But the filling out does take a lot of time, especially when the questions are new to people. Also some of the questions sometimes puzzled participants. Some questions are based on Buddhist theory, not all users are familiar with that.

Light influencing
Design group experimentsThe experiment design was that each 20 minute session would test one type of light. Although I explained this clearly on the ticket registration page people had different expectations. Some people expected a more dynamic light. These are interesting things to explore in the future but at this point the most important thing is to find a relation between the light and the meditation quality. The more I vary, the harder this will be, especially as my dataset still isn’t that big.
The blue light in particular was experienced very differently by people, while some found it relaxing others got a headache… One participant suggested to use indirect light. A very good idea. That way you are not watching a light source but are just experiencing the radiance. I have been testing it and have found it much more comfortable.

Data
Participants are much interested in the biometric data. At this point there is only limited possibility to view the data. It would take too much time to show every user. All participants will get plots and a summary of their data of the sessions they participated in. The people that did look at their data found it mostly confirmed their feeling about the experience. They could for example recognize their fidgeting during a session and the deepening of the breathing between sessions.
We are working towards an overview of all sensor data on one page, providing mean values and comparison of sessions. Making the experience of the data more meaningful and helpful is something I will be exploring in the near future. It is a study in and of itself.

Conclusion
The experiments were about testing the suits and the system. Working with so many people has been really worthwhile. I have much better insight into what works and things in the system and experimentation routine that can be improved. The data of different users will be fed to the smart algorithm to help improve it so it can create the most optimal light during meditation.

If you ever want to participate, keep an eye on my Eventbrite and Facebook page. Or contact me through this blog so I can put you on the list. Hope to meet you sometime!

The artist as boundary crosser in the collaboration process to create a mixed media art piece

This article I wrote with my intern Meike Kurella for the Design Research Society conference 2018. The article was rejected but we would still like to share our findings here.

Summary

In this article we explore the role of an artist in a multidisciplinary team with regard to the effectiveness of the communication and the productivity of the team. In this case study a diverse team worked towards a complex, multifaceted, interactive art piece. Our main questions were: What makes this challenging collaboration successful? How does the team deal with the boundaries they encounter? We have looked at those questions from the following angles: The teams’ use of boundary objects, the multidisciplinarity of the artist, her artistic vision and the final result the team is working towards. We have researched these questions using observation, reflection and through a questionnaire answered by every team member. We have come to the conclusion that all four angles have contributed to the success but there may be other factors at play which call for further exploration.

Keywords: Experiential Knowledge; Boundary Crossing; Boundary Object; Multidisciplinary Collaboration

Introduction

This article describes part of the creation process of a mixed media artwork. This work is being created during a six month project as part of the WEAR Sustain open call. The aim of the WEAR consortium is in line with the broader goal of the European Commission “…to enhance creativity and the innovative capacity in industry and society…” (“Open Call Themes”, 2017) it wants “…to boost synergies between artists and ICT experts (technologists) to enable Europe to benefit from the catalytic nature of the arts and culture across European society and industry. …In order to promote further collaboration between the arts and technology through innovation activities, WEAR focuses its engagement in collaboration, co-design and co-development of a new generation of ethical, critical, and aesthetic wearable technologies and smart textiles to influence change in industries practices and for a more circular economy.” (“Open Call Themes”, 2017)

Artist DR works at the intersection of art, technology, science, spirituality and design. With her work she wants to promote self and environmental awareness and well-being using emerging technologies and data. At the time of the call announcement she had already been working on a wearable for a year. The wearable tracks physiological and environmental data during meditation. Its aim was to learn if and how meditation practice can be optimised by changing aspects of the environment.

This wearable fitted the theme and criteria of the call. She applied for the call and was one of the 23 winners. Below follows a brief description of the project.

The project is called Meditation Lab Experimenter Kit. It is a tool-set that allows users to do their own experiments to improve their meditation quality. The kit consists of:

  • a wearable with 10 different sensors called Silence Suit
  • a software program for storing, analysing and managing data and wearables called the Data Server
  • an Internet of Things interface to automatically influence environmental light using a device called Light Instrument
  • an API to create your own applications with the data

To realise this the system makes use of emerging technologies like Internet of Things. This allows devices to talk to each other wirelessly such as, in this case, the wearable and the light device. An artificial intelligence module will learn from the data to create the most optimal light circumstances for meditation for individual users.

During this 6 month project we focussed on building a basic, flexible system that can actually influence meditation through light.

The structure of the call is such that you apply with a team, they are the project owners and get to spend the most time and money on the project. With additional vouchers a team can buy external expertise not present with the team members. So there is a technical difference between team members and external experts. For our research in this article we will however regard both types of collaborators as part of the team.

Both authors of the article are part of the team. They work on the project as well as reflect on the collaboration. Below we will describe the team and its members in more detail.

What might set this project apart from other design assignments is that the artist is also the commissioner. She had complete freedom in determining the deliverables and setting their standards. She could decide on the success of the project and its outcomes.

At the time of writing the project is still ongoing and is in its third month. But the first stage of the project is where the collaboration is most intensive and the meetings are most frequent. During the first stage the design and production of the wearable takes place. The data server structure and interface is designed. Both these activities require a lot of communication and collaboration. We therefore think that reflecting on the collaboration at this stage will still yield valuable insights. More so because were are not only looking at the results to inform the success of the project and collaboration but we are especially looking at the role of the artist within the team.

Starting points

The product

Part of the requirements of the WEAR Sustain call was that there was already a prototype at technical readiness level 3 (TRL3). At the start of the project there was a wearable that could be worn and data from the sensors could be plotted and stored. So a lot of the design, the concept and technical groundwork was already done. The collaboration during the first three months focussed on:

  • Improving the existing wearable with regards to technical robustness, look and feel, usability and interaction design
  • Designing the overall system and the Data Server which included: system architecture, database design and user interaction

The team

The team consists of a mix of experienced experts, students and interns. Their backgrounds vary from computer science and electronic engineering to design and fine arts. This is a typical setting of boundaries at work in the technology and design domain as explained by Akkerman (Akkerman & Bakker, 2011). Below is a summary of the team members’ roles and expertise. This provides a picture of the diversity of the team.

The main team (as defined in the WEAR Sustain call) are:

DR is an artist. She is the project manager and during this part of the project works on various design tasks ranging from interaction design, experiment design and soft electronics. She holds a BFA in sculpting and monumental design. She has completed several university courses in psychology, psychological experiment design and statistics. She finished several courses in the field of software engineering and intensively studied information architecture. She learned the basics of electronic engineering. She took online courses on Buddhism and psychology and philosophy. And she has studied and practiced user-centred design. DR combined autonomous art production with work as a self-employed web designer (until 2013) and various teaching jobs and project management in the cultural sector (up to the present). We will explain the significance of this knowledge and experience in the collaboration process below.

VP is a textile designer with a strong interest in technologies like 3D printing, laser cutting and sustainability through fashion on demand. She is responsible for the suit design, pattern making and production.

SB is an embedded software engineer with experience in hardware for wearables and software development. He’s an employee of the innovation acceleration foundation Protospace. He is responsible for the system design and programming of the Data Server.

The external experts (as defined in the WEAR Sustain call) are:

SG is a master student embedded systems. At this stage he is responsible for the electronics and firmware.

KH is a master student embedded systems at Twente University. He is responsible for the design and production of the PCBs.

JD is a bachelor student mechanical engineering at Twente University. He is responsible for the design and 3D printing of the containers for the electronics.

AH is a student Multimedia Design and Communication and is an intern at Protospace. She works on the user interaction and interface design of the Data Server.

GB is a data scientist. He is responsible for the learning algorithms and artificial intelligence module.

HA is a software architect. His responsibility is to ensure the robustness, flexibility and scalability of the whole system.

MK is a fine arts student. As an intern at DR she works on describing the ongoing development of Meditation Lab Experimenter Kit in a weekly blogpost and various hands on tasks like sewing.

The team has used several ways to communicate. Because members were scattered over 5 locations telephone and teleconferencing have been used in addition to face to face meetings.

Research methods

To research DRs multidisciplinairity and the impact on the collaboration with experts from different disciplines, we reflected on the interaction between team members in specific meetings. Especially, we focused on the role of the DR in relation to others. In this research DR reflected mainly on herself and how she experienced the collaboration and the communication. MK took on the role of an observer to reflect on how the collaboration and the communication seemed to a third party.

To verify the assumptions we made, we asked all team members to fill in a survey about how they see the collaboration and communication. In this survey we combined 5 point Likert scale responses with open questions where the team members could describe their individual point of view. So we could get as much detailed information as possible as well as the possibility to compare them to each other.

The questions we asked the team members were about their own role and their motivation to work on the project. DRs role and her qualities, as well as the interaction between DRs role and the team members and the quality of the communication within the collaboration (Attachment 1).

Working with boundaries

In this part we want to further explore the role boundaries play in this project. We have described the multidisciplinary team, the artist leading the team and the mixed media deliverables the project will yield. We want to take this a step further and show how boundaries, boundary crossing and boundary objects are at the core of the process and the end result.

When looking at the progress in the first months (milestones are being met) and the overall smoothness of the communication and collaboration (rated 3.81/5 by the team) we believe the collaboration up to the point of writing has been successful. This is despite the diversity of the team and the complex results they aimed for. We hypothesise this is due to the following factors:

  1. The use of boundary objects
  2. The multidisciplinary artist
  3. The artistic vision
  4. The art piece as a boundary object

1. The use of boundary objects

In order to make communication and transfer of knowledge possible and better, mixed teams make extensive use of self-created objects often referred to a boundary objects. They can be described as artefacts doing the crossing across sites by fulfilling a bridging function (Akkerman & Bakker, 2011). The team described in this article is no exception.

We have identified 19 objects which can be considered boundary objects (table 1). They have been used on varying occasions and by different numbers of team members. Because the art piece is multi-faceted, every facet has its own set of objects which may explain the even distribution of use and perceived usefulness of the various objects (table 1).

Table 1. Overview of identified boundary objects

  Title/name Type Use frequency Subjective importance
1 Meditation Lab Experimenter Kit|System Specifications Dropbox paper 41 changes, 7 remarks in 2 months, shared with 7 users 3
2 MLEK Data Scheme Dropbox paper 13 changes, shared with 6 people 2
3 Silence Suit first design a Tangible object Brought to x f2f meetings 3
4 System Outline version 2 Schematic image Brought to almost every meeting, referred to in Skype meetings 1
5 MLEK system architecture PowerPoint with system architect proposals Used in one Skype meeting 3
6 MLEK data server user interface and functionality Schematic image Used in two meetings, referred to in no 1 4
7 Costumer journey maps Text file Used in two meetings 2
8 MLEK DS Implementation Schematic image Used in one meeting 4
9 Meditation Quality Classification Annotated image Used in one meeting  
10 Silence Suit textile sample version 1 Tangible object Used in one meeting 2
11 Silence Suit textile sample version 2 Tangible object Used in one meeting 2
12 Silence Suit first prototype b Tangible object Used in one meeting 2
13 Silence Suit part list Excel file Used in several meetings, shared with multiple people  
14 Project management plan Design Lab White board drawing Used in one meeting  
15 Cable and connection layout version 1 and 2 Drawings Used in several meetings, shared with multiple people 2
16 Photographic notes Photographs Used in several meetings by the designer 1
17 3D PCB designs Technical drawing Used in several meetings 2
18 To-do list per meeting Evernote to-do list Used in one meeting 1
19 User interaction flowchart Schematic image Used in several meetings, shared with multiple people 1

 

In our survey we asked the team to name the objects most helpful to them. We have ranked the objects found most useful by the team and categorised them:

  1. Schematics of the system (5 objects)
  2. Prototype (4 objects)
  3. Interactive collaboration tools (on-line) (2 objects)
  4. Drawings (2 objects)

Other objects have been used but were mentioned once or not at all by team members in the survey.

From the reactions in the survey it has become clear that the appreciation of the communication and the intensiveness of use of boundary objects are strongly linked. To explain this finding we give two examples on the extreme of the collaboration spectrum.

On the one hand is the work with VP, the suit designer. VP rated the overall communication 5/5. DR and VP have worked intensively on the user interaction with the suit. They have used iterations of the suit prototype to explore the way in which users will wear it and interact with it. The prototype was always at the centre of the communication. They enacted the future interaction with the suit with simple objects available at the scene (image 1). This way they simulated the future reality for the user and made it visual and tangible for both the artist and the designer. This type of learning through boundary objects is part of the reflective impact of boundaries called perspective taking. “This taking of the other into account, in light of a reflexive knowledge of one’s own perspective, is the perspective-taking process”. (Akkerman & Bakker, 2011, pp. 145). We crossed the boundary into the future to imagine the most optimal way for the future users to interact with the garment. The object facilitated our learning and thinking process.

Paper sensor, photo Vera de Pont

Paper sensor, photo Vera de Pont

Image 1 cardboard sensor replica and suit prototype. Photograph by VP

On the other hand is JD, the 3D printing expert. JD rated the overall communication 2/5. Contrary to the many samples of VP, JD only presented DR with a 3D drawing of one of the containers during a Skype meeting. It was difficult to get a clear idea of the container from the screen, this was also hampered by lack of computing power to render the drawing. In his statement he clarifies that much remained unclear because of different frames of mind. This makes clear that from his perspective boundaries were not crossed. This is underscored by his remarks when questioned about the use of boundary objects: he finds boundary objects useful in general but acknowledges the fact that we made poor use of them and mostly used email.

What was lacking is this particular communication was the learning aspect of coordination in which “…effective means and procedures are sought allowing diverse practices to cooperate efficiently in distributed work, even in the absence of consensus…” (Akkerman & Bakker, 2011, pp. 143). In those cases boundary objects facilitate the bare minimum of dialogue necessary to maintain work flow (Akkerman & Bakker, 2011). 3D printing is an area DR is not very knowledgeable in. JD is a young and specialised student. The two perspectives were very much apart. A requisite for coordination is a communicative connection between diverse practices or perspectives established through boundary objects (Akkerman & Bakker, 2011). The lack of (good) mediating artefacts at least partly explains the low productivity and stagnant work flow in the design and production of the containers.

These examples make very clear the key role boundary objects have in supporting boundary crossing communication.

2. The multidisciplinary artist

Multidisciplinarity

To characterize DR as an artist we first need to define different kinds of artists in the contemporary art scene as described by Gielen, van Winkel, Zwaan, 2012.

Nearly every contemporary artist is a multidisciplinary artist who has no steady medium. By medium we mean the traditionally known disciplines, such as painting, sculpting or ceramics through which the artist expresses himself. We are living and working in the post-medium-conditions. This means that the question about the medium no longer defines the artistic practice. It no longer defines you as an artist. It changes the artist’s self-concept as well as how he is seen in the society (Gielen, van Winkel, Zwaan, 2012).

In our days, many creative professions are plural practices. Bureau and Shapiro define in ‘L’Artiste Pluriel’ three different levels of pluriformity: the polyvalent artist, the polyactive artist and the pluriactive artist. The polyvanlent artist has different tasks in his own artistic practice. That could be creating things, developing the concept as well as managing his own project and governing financial matters. The polyactive artist has different professions in different social fields. It is the artist who has a non-artistic job in addition to his artistic practice. The pluriactive artist has different professions in the creative field. That means that the job you have in addition to your artistic practice takes place in the applied art field.  Pluriformity is an economic as well as a legislative and a political choice. It offers you a financial security but it changes the identity and the autonomy of the artist (Gielen, van Winkel, Zwaan, 2012).

Camiel van Winkel, Pascal Gielen and Koos Zwaan add a fourth level of pluriformity to the artistic practice. It is the hybrid artist they introduce. A hybrid artist firstly has to be a pluriactive artist. Secondly, the two practices of autonomous and applied art are no longer divided, so that they are equal. They take shape in one context and in the same production. The blurring can contribute to the identity and the profile of the artist in a positive way. The artist has no need to divide the tasks because they enhance each other (Gielen, van Winkel, Zwaan, 2012).

As van Winkel, Gielen and Zwaan describe, together with the hybridism and the post-medium-conditions goes also the deskilling of the artist. The contemporary art practice is build up around a framework of concepts, intentions and attitudes. The vision of the artist is central. From here the artist determines which (technical) skills he has to learn to realize the vision. This phenomenon is called deskilling because the skills itself come on the second place. They are a derivative of the vision instead of a main thing. The artist creates a versatile package of skills (Gielen, van Winkel, Zwaan, 2012).

In this sense the artist maintains his autonomous context which is characterized as self-determined, uncompromising and authentic (Gielen, van Winkel, Zwaan, 2012). The vision of the artist is central. It is the critical view of an artist and the extraordinary capability to reflect on yourself as well as on the society. A driving force to the artist is the will to make things nobody is waiting for, except yourself. From the personal desires and inspirations around yourself the vision of an artist develops.

Having described the various types of contemporary artist we will now explain how DRs position is unique and how it may influence the team collaboration.

Looking at her art practice we can conclude that DR is polyvalent, pluriactive and hybride in different parts of her practice.

When DR is working in her studio she is an polyvalent artist. Also in this project she has different tasks such as team leader, project manager and artist at the same time.

She is a pluriactive artist when she adds various design aspects to her artistic work, may it be the research method or the outcome of the work.

The combination of design and autonomous work goes further in the case of DR than a pluriactive practice. It definitely can be said that she is a hybrid artist. ‘There is no need to divide the different domains of my work, because it is not possible to divide them. The autonomous practice needs the applied art to meet my vision and vice versa’, she explains.

We think that her skills and her artistic identity go beyond the practice of a hybrid artist. DR graduated from St Joost art school in Breda, the Netherlands in 1993 on the subject of sculpture and monumental design. So when she finished her art school education the post-medium-conditions were not that present as they are nowadays.

DR is not only active as a creative but has also worked in and or studied psychology, ICT and spirituality. During her career as an artist DR has built a broad set of skills and she has expanded her knowledge continuously. Not only to keep up to date with new developments but also to broaden her view.

This process is called ‘deskilling’ (Gielen, van Winkel, Zwaan, 2012). The choices of what to learn and how to expand are closely linked to the artistic vision. DR studied these fields to enhance her art practice and to be better able to talk to experts in different fields. On the other hand the studies and work in different fields are also a big source of inspiration to her. They feed her artistic practice and help her come up with new ideas and provide different angles of looking at reality.

During her career she has stepped outside of the art scene and traditional artist sources. She has been on the lookout for new and interesting developments in science and technology. This is what sets her apart from regular hybrid artists. Having a broad repertoire and keeping a learning mind-set are typical for innovators (Liedtka, 2017). We believe it is this outlook which enables her to perform well across boundaries as we will explain next.

Boundary crossers

Akkerman & Bakker explain the ambivalence people working at the boundary may perceive: On one hand they have a very rich and valuable position since they are the ones who can introduce elements of one practice into the other (cf. Wenger, 1998). On the other hand they face a difficult position because they are easily seen as being at the periphery, with the risk of never fully belonging to or being acknowledged as a participant in any one practice (2011).

Within this project DR clearly performs the role of boundary crosser. Contrary to the claims made above she didn’t experience any of the difficulties described. We contribute that to the following factors.

After winning the open call DR automatically became the commissioner of the Meditation Lab Experimenter Kit project. She also controlled the budget. She was right at the centre of the project and never experienced herself as being at the periphery.

She felt a strong sense of belonging. DR describes her own role as including but not limited to guarding the process and keeping direction. With that comes a natural leadership position which the team recognises and respects. SG describes her role as between costumer and product owner.  He says: “We have room for our ideas but finally, she [DR] has to agree. Therefore we have to underpin our ideas well.” Apparently the team members follow DR as a leader but also feel free to bring in their own ideas.

As for never being acknowledged as a participant in any one practice: this and other projects have shown that being a boundary crosser is at the core of her work and her identity as an artist. Complex projects like the one described in this case study enable her to fully be an artist at the cross-roads of disciplines and domains.

As explained above DR can be characterised as hybrid artist and innovator which implies a broad repertoire and a learning mind-set. Both the contemporary artist and the innovator can be characterised as multidisciplinary. To verify if DR was perceived as such by the team we first asked the team how they rated the multidisciplinary of DR. This yielded a score of 4.4/5. So the overall perception was that DR is highly multidisciplinary. Next we asked if this broad knowledge was sufficient for the team members to perform their role and tasks. The knowledge sufficiency was rated 4.2/5. DRs overall general knowledge and openness to expert knowledge is appreciated. She has enough general knowledge to be able to enter the conversation. But there is enough room for the experts to do their job and feel they have an import role to play in the project. They feel DR relies on their expertise. “DR learns quickly and trusts advice.” is HDs comment on the question if DRs knowledge is sufficient. SB put it very well: “On a global level, yes on implementation level no. In my opinion global knowledge is in this case important.”

3. The artistic vision

We hypothesised that the artistic vision of DR could influence the motivation of the team members in a positive way. To verify this hypothesis we asked them in the survey if the artistic vision influenced their motivation. This yielded an average of 3/5. But there is only one team member who scored a 3. This points to a balance between two extremes of members who find the artistic vision a very strong influence on their motivation on the one hand, and on the other hand people who find the artistic vision does not influence their motivation at all. We wondered how it can be that the opinions of different team members on the same project are so far apart.

To explain these extremes it is interesting to look at the members own motivation. Here there are also two extremes. On the one hand, there are team members who are mainly motivated because of the collaboration aspect of and the personal challenge contained in the project. E.g. VP: “Knowledge enrichment concerning technology. Working in a team. Being a member of a bigger whole.”

On the other hand there are team members who mainly work on the project because of specific interests such as money or the fascination for their own discipline (e.g. JD: “Money.” or KH: “I am always in for electronics.”). We compared the extremes of the motivation to the extremes of the influence of the artistic vision and it appears that those who worked on the project because of the collaborative aspect were influenced by the artistic vision and those who were focused on a specific interest were not influenced by the artistic vision.

We consider these two perspectives a strength of this project, not a weakness. Members coming from different angles could and did find their role and contribution to the project useful, as we will explain below.

We see the artistic vision as guiding: even if it is not influencing people’s work or motivation directly, this project with all his complexity and diversity could never have taken place without a strong artistic vision.

4. Art piece as a boundary object

When looking at the description of a boundary object one may conclude that the final result of the collaboration will actually be a boundary object. The results translates between different disciplines as well as between autonomous and applied art. We believe this quality contributes to the success of the collaboration, as we will explain below.

The final result will be a mixture of different media and fields of expertise. This will make it accessible for different types of users:

Users wanting to optimise their meditation.

Users who want to experiment with their meditation.

Developers who want to explore new possibilities with the data and the build in Internet of Things functionality.

Users who enjoy the autonomous quality of suit and art works created from the data.

Right in the middle of these use cases is Meditation Lab Experimenter Kit. To accommodate for these different uses the outlook and expertise of very different people was needed.

The parts we worked on at the time of writing were: the garment, the electronic hardware and its containers, the embedded software, the data server with data base and user interface, the artificial intelligence module and the overall system architecture. The outline of the results were there, they guided the various tasks. But there was enough room for every team member to experience that their expertise is a valuable contribution. When asked about their role 4 out of 11 team members explicitly mention their role in the project as useful or important. The others see their role mostly as facilitating important parts or the project as a whole. Or as SG put it: “…It is clear that she [DR] needs to be surrounded by a team of experts to develop all the details of her ideas.”

Conclusion

We have described the process of working on a complex mixed media project with a diverse multidisciplinary team. Despite these challenging circumstances milestones were met and the quality of the communication and collaboration was high. We have explored the reasons for this success through observations, reflection and a survey among team members. We have discovered that the four aspects below have contributed to the success:

  1. The use of boundary objects
  2. The multidisciplinary artist
  3. The artistic vision
  4. The art piece as a boundary object

With respect to item 1. we conclude that we have used many different types of boundary objects which can be explained by the multi facet-ness of the project. In most interactions they have been used intensively. Which resulted in good productivity and communication. In the one case where boundary objects were lacking we saw a lack of productivity and poor communication.

With regard to DR as multidisciplinary we conclude that as an artist DR goes beyond the hybrid artist. Her innovative mindset has provided her with broad general knowledge. This enables her to easily cross boundaries. Her knowledge is sufficient to lead different team members. Being a generalist creates the need for expertise but also creates room for others to excel in their expertise.

We can conclude that the importance of the artistic vision differs among team members. This is driven by individual motivation. Still the overall vision is crucial because it connects the many facets and disciplines included in the project. But we believe that the passion of the artist in pursuing this vision reflects on the team members and acts as a source of inspiration. It might be the (hidden) driving force to go that extra mile. It triggers the team members to cross the boundaries of their own expertise.

Because we can identify the final art piece itself as a boundary object it provides room for users and experts to take a stance on the result and the tasks involved. This allows team members to view their contribution as an important part of the whole. The nature of the art piece is one of the aspects that enabled the successful design and production process.

This research has provided insights into what aspects contribute to successful communication and collaboration. For this article we only looked at the first months of the project period. Future research should take into account the whole project period. We believe that the role of the artistic vision and artist as someone who inspires is worthy of further research.

 

Referencing

Abrahamson, D. & Chase, K. (2015). Interfacing Practices: Domain Theory Emerges via Collaborative Reflection. Reflective Practice: International and Multidisciplinary Perspectives, 16(3): 372–389. DOI: 10.1080/14623943.2015.1052384.

Akkerman, S.F., Bakker, A. (2011). Boundary Crossing and Boundary Objects. Review of Educational Research, 81(2), 132 – 169.

Bowen, S., Durrant, A., Nissen, B., Bowers, J. & Wright, P. (2016). The Value of Designers’ Creative Practice within Complex Collaborations. Design Studies, 46, 174-198. DOI: 10.1016/j.destud.2016.06.001.

Gielen, P., van Winkel, C., Zwaan,K. (2012). De hybride kunstenaar; De organisatie van de artistieke praktijk in het postindustriële tijdperk [The hybrid artist; The organisation of the artistic practice in the post-industrial age]. Breda, Netherlands: AKV|St. Joost Expertisecentrum Kunst en Vormgeving.

Liedtka, J.M. (2017). Design Thinking for Innovation, Coursera Course University of Virginia.

Open Call Themes. (n.d.). Retrieved November 11, 2017, from https://wearsustain.eu/open-calls/open-call-themes/

Appendix 1

Questions to team members

1. What did you expect from the project before you started?

2. What motivated you to take part in the project?

3. Meditation Lab Experimenter Kit is guided by an artistic vision (working towards a high tech hermitage). Does this vision have an impact on your motivation?

4. How do you see your role in and its meaning for the Meditation Lab Experimenter Kit prototype?

5. How would you characterize the role of Danielle within the project?

6. How multidisciplinary does Danielle appear to you? How does that impact your tasks for this project?

7. Do you fell Danielle’s knowledge is sufficient for your contribution?

8. The next questions are related to specific meetings. In answering the next questions please go back to one of the following meeting. State in your answer which meeting you picked.

a. Software kick-off via Skype Monday 21 August from 14-16h

b. Kick-off at Design Lab Twente Monday 11 September from 15:30-17h

c. Work session at Design Lab Twente Thursday 5 October from 12-17h

1. If you think back to these meetings how good was the communication? (Think of smoothness, mutual understanding, knowledge sharing, etc.)

2. To communicate we used several aids (think of: prototypes, schematics, shared documents.) How would you describe the meaning of those aids with regards to the communication? Which aids were most useful to you?

Visualising converstation

During the Dutch Design Week Awareness Lab conducted an experiment which consisted of a virtual tour through the future Meditation Lab. Visitors viewed a slide show and got an explanation of what it will entail to use Meditation Lab Experimenter Kit (MLEK).

After the tour we asked them open-ended questions like: Can you imagine using MLEK? Do you think the use of the PC is disturbing or contributing to your mindset and attitude? Do you have experience in meditation?
We collected 10 forms and got responses from 14 participants. We were touched by their involvement and interesting and valuable remarks. Remarks turned out to fall into a few areas of interest. Some remarks were mentioned only once others up to six times by different people.

DDW17poster

DDW visualisation of comments during the Meditation Lab virtual tour

You may download this A3 sized PDF: DDW17Viz

I would like to thank: the participants, Creative Ring Eindhoven, Meike Kurella, Hans d’Achard.

Single person experiments with light

A romantic dinner by candle light, bright lights in an office building. Both give us a very different experience. We all know from experience how light can influence our mood and the way we perceive a space.
What I want to find out with Meditation Lab is if light conditions can also influence the quality of your meditation experience. I have a hunch that it does. This is also based on over 20 years of daily meditation practice. And I’ve found starting points on optimal lighting during meditation in scientific research.

Building a meditation lab in my attic

Building a meditation lab in my attic

Conditions for a good meditation session

Contrary to a commonly held belief meditation isn’t about being relaxed and a little sleepy. I practice in the Buddhist tradition of Vipassana (insight) meditation. This form of meditation is about being fully present in the moment without effort. This clear observation will give a person insight into the true nature of reality. This insight will help to overcome suffering and to become a wiser and more compassionate being. An important concept in this context is the Satipatthana.
So the ideal state for a good meditation session is being relaxed but at the same time alert. I had heard about changing light conditions in classrooms to support different activities and states of mind of students. I was also wondering if work had been done on the psychological aspects of light. I’ll summarize my findings and tell about how I will be translating that into one person experiments.

Working with a light expert

Before diving into the theory I would like to explain how I will go about changing the light conditions. I was very fortunate be introduced to Tom Bergman. He is Principal Scientist at Philips Lighting. He has been working on what he calls Light instruments: LED light systems that can be programmed and played like a musical instrument. With his instruments he wants to go beyond mere functionality and use light for expression and experience. Our goals and explorations were a perfect match. I will be using his 9 x 9 mosaic instrument. It can make all colours and make beautiful and unexpected colour transitions. Also interesting is that it has been tested as tool for relaxation by master student Nina Oosterhaven (1). Her study showed for example that looking at changing patterns of light showed a significant reduction in heart-rate. So there are interesting starting points to work with the instrument.
The light instruments are of course very specialized and not commercially available. So Tom kindly also supplied me with a Philips Hue Go. This will enable me to try out similar settings with a consumer device which is already Internet of Things ready.

The lab set up: Light instrument, meditation mat and data server

The lab set up: Light instrument, meditation mat and data server

Types of light

Psychological effects

In the various articles I read I was looking for settings in light colour and intensity that would either relax or activate people and make them alert. There hasn’t been much research on the psychological effects of lighting. Seuntiens and Vogels(2) have done research on atmosphere and light characteristic in living room settings with a group of light designers. They looked at four types of atmospheres of which activating and relaxing are relevant for Meditation Lab. Interesting were their findings on the influence of colour temperature, brightness and dynamics on these atmospheres. In general the findings were: warmer (+/- 2700 Kelvin), static and less bright light (180 lux) is perceived as relaxing. Cooler (+/- 3800 K) and brighter light (390 lux) is perceived as activating this light can have a slow dynamic.

School performance

Sleegers et al (3) looked at school performance in children and students under adjusted light conditions. Their studies used build in light systems which had different settings. Focus, calm and engery are the most interesting for my project. Energy is an interesting setting, it is used in the morning or after mealtime to overcome sluggishness. The settings correspond with the following light properties (measured at eye-hight):
Energy:650 lux and 12000 K colour temperature
Focus:1000 lux and 6500 K colour temperature
Calm:300 lux and 2900K

Staying awake

Jacques Taillard et al (4) studied the effects of blue light on staying awake whilst driving a car at night. They compared the effects of continuous blue light to drinking coffee. When compared to a placebo both coffee and the blue light condition reported significantly less inappropriate line crossings with coffee doing only slightly better then blue light. The light source was a Philips GOLite with a wavelength of 468 nm. Luminance level was around 20 lux measured at eye level.

Research design

Sleepiness, tension and lack of focus are challenges you face when meditating. By experimenting with different types of light I want to find out if the findings in other areas can be used in a meditation setting. I will use warm white light for relaxation, cool white light for focus and blue light for alertness. I will be exposed to one light condition per 20 minute meditation session. Before and after every session I fill in the standardised questionnaires which I have designed. I have started single person experiments (n=1) and I have designed the following experiments.

Design single person experiments

Design single person experiments

There is no baseline measurement included in the single person meditation session. Instead I have conducted 54 baseline session under my usual meditation conditions. I did a 6 day solitary retreat at home. The sessions took place throughout the day, I didn’t manipulate anything, especially not the light conditions. So they varied widely as the day progressed.

Current findings

At the moment I’m conducting n=1 experiments using the Light instrument and the three main light states described above. I’ve set up a darkened lab to control the light conditions. I keep my eyes slightly open with my gaze turned down.
My first impressions are that there is a difference from what I normally experience during meditation. The white lights I find quite relaxing and somehow invigorating. The blue light I find less pleasant and a bit depressing. I suppose the light will interact with my overall state of focus, sleepiness and alertness as it fluctuates during the day. That is why I try to do the experiments at different times of the day while using the same light setting. I do worry a bit about my sleep when meditating in the evening in bright light. For that reason I have turned down the brightness (there a 5 settings) in an effort to not affect my sleep too much.

The single person experiments are my starting point. Later I will report on my design for group experiments. I’m always on the lookout for people who would like to join the experiments. So please leave a comment if you want to participate.

References
1) Oosterhaven, N. (2017). Fascinated by Dynamic Lighting. Thesis Master of Science In Human Technology Interaction
2) Seuntiens, P.J.H. & Vogels, Ingrid. (2008). Atmosphere creation: The relation between atmosphere and light characteristics. Proceedings from the 6th Conference on Design and Emotion 2008.PJC Sleegers, PhD, NM Moolenaar, PhD, M Galetzka, PhD, A Pruyn, PhD, BE 3) Sarroukh, PhD, B van der Zande, PhD (2013). Lighting affects students’ concentration positively: Findings from three Dutch studies. Lighting Research & Technology Vol 45, Issue 2, pp. 159 – 175
4) Taillard J, Capelli A, Sagaspe P, Anund A, Akerstedt T, Philip P (2012) In-Car Nocturnal Blue Light Exposure Improves Motorway Driving: A Randomized Controlled Trial. PLoS ONE 7(10): e46750.

How to test a meditation wearable?

I suppose the answer to that question is obvious but not so easy to realise: during a retreat. But still, that is what I did. Last week I spend 6 days meditating while at the same time putting my brand new wearable and software platform to the test.

It was snowing outside while I was doing my 6-day retreat

It was snowing outside while I was doing my 6-day retreat

What is it all about?

For those of you who missed it: the past 3 months I’ve been working on the Meditation Lab Experimenter Kit. The focus on those first months has been to design and develop a new Silence Suit wearable, improve the electronics and create a software platform (the Data Server) to log and explore the data.
The whole team has been working really hard to get the prototype ready for single user testing. It was quite exciting to put all the different parts together which have been developed by different team members on separate locations. I managed only just in time to get everything to work for the start of my self conducted retreat.

Data science

The main goal was to gather as much baseline data as possible. At a later stage I will try to influence my meditation through manipulating the light. But to really see the effects I need insight into how my ordinary meditation data looks. So German, our AI and data science expert, advised me to get as many 20 minute sessions as possible. I managed to do 54!
Things I wanted to know:
Do all the sensors produce reliable data?
How stable is the software platform?
How easy is it to use the wearable and the platform?
Will I enjoy using both?

Do all the sensors produce reliable data?

MLEK HR

Getting good heart-rate data was the biggest challenge

Because I had been working with most of the sensors in my first prototype I had a pretty good idea of what the data should look like. Programmer Simon had swiftly put together a script that could plot data from all the sensors in graphs. That way I could easily grasp the main trends. It immediately became clear that the heart-rate sensor wasn’t doing what I’d hoped. A lot of beats were missed, once even only 2 data points were collected in 20 minutes (and no, I was not dead).
Oddly enough the rest of the data was fine. I tried recharging the batteries and changing the ear clip but nothing worked and whether or not I’d get good data seemed unpredictable. Until the final day.
While looking at the graphs after I’d finished a session I casually rubbed my earlobe and it felt cold. I looked at the data and saw that the signal deteriorated towards the end of the session. Eureka! The blood flow to my earlobe was the problem, not the electronics.
Cold is a major influence but I also want to experiment with the tightness of the clip. It might prevent the blood from circulating properly.
So most sensors performed well, better even than I’d hoped. Unfortunately no data comes from the cute little PCB one of the students at Design Lab has designed and soldered. Also the soft sensor for detecting sitting down (also the start button) is still unstable.

Force sensor to measure pressure between fingers

How stable is the software platform?

The software runs on my old Dell laptop and Simon has installed the Lightweight X11 Desktop Environment (LXDE) on it. So it runs on Linux which was a new experience for me. But I like it, it is basic and simple and does what it should. To start the system I have to run the server for data storing and the adapter for communication with the hardware. I must say I am very impressed with the whole performance. There has been no data loss and the plots are great to get an impression of the session.

getSession

Data output from one meditation session

How easy is it to use the wearable and the platform?

I was pleasantly surprised by the comfortableness of the suit even after 10 sessions in one day. Putting it on with attention takes about 2 minutes and then you’re all set. You hardly notice that you are packed with 10 different sensors.
The pre and post qualitative forms are easy to use. At the moment I still have to use URLs to access certain functionality but everything works and that was such a relief. Plotting the data with around 5000 data points per sensor per 20 min session is hard work for my old Dell. But it gives me time to do a little walking meditation…

Maybe it is just me but I don’t mind filling in two forms for every session. I seriously consider every question and try to answer as honestly as I can.
Doing two or three session in a row is even easier. All I have to do is refresh the home page of the server and I can start another session.

Will I enjoy using both?

Well yes, using the system was a pleasant experience for me. I did learn that I should not look at the data before filling in the post meditation questionnaire because the data caused my mood to plummet. So it will be best to have the data summery after that has been done.

last Session

Session summary. The number of data points will be replaced by mean values.

I have a lot of confidence that the system will be useful and give a lot of insights. There is still a way to go until I can actually automate the light actuation intelligently. But the plots did show variations and now German can work his magic. I can’t wait to see what he will come up with.

Design Lab nirvana

Ready, set, go!

After a difficult start things are really starting to move. Since a couple of weeks all the team members are working on their individual tasks: the database design, the interaction design, suit design, PCB design and experiment design. The project feels like a sort of organism that grows organically in different directions. I keep track of what everybody is up to via Skype or phone but nothing beats a face to face meeting. Last week we had such a meeting at the Design Lab Twente.

Teamwork, photo Meike Kurella

Teamwork, photo Meike Kurella

From 12 o’ clock onwards the Lab had kindly reserved a room for our team to collaborate. Present were Klaas and Stephen students from the TU Twente, designer Vera and my intern, art student Meike.

Klaas and Stephen have been working hard on the PCB design. Their main task is to simplify the design and make it more robust. Vera had been working on the first silhouette of the suit. Our goal for the afternoon was to check if things were still matching up.

Paper sensor, photo Vera de Pont

Paper sensor, photo Vera de Pont

Match maker

The boys walked me through their designs. We were able to clarify things for each other and we spend quite some time on the plug layout and the interaction with them.
I’m learning more and more to think like a designer by assuming the role of the user and by quick prototyping of problems and interaction hiccups. I really loved the way Vera and I found solutions by taking a different angle, using paper, key-cards and even a jojo to make future usage tangible.

Key-card as batch, photo Vera de Pont

Key-card as batch, photo Vera de Pont

Vera and I also discussed the fit and aesthetics. Wearing the suit has to be a pleasant experience that has to be put to the test. At the end of the afternoon Stephen said: You must like the way it fits, you’ve been wearing the suit all afternoon. And he is right, it does feel good to wear it.

Storing wires, photo Vera de Pont

Storing wires, photo Vera de Pont

I also loved the way in which we all are working towards something which still isn’t completely clear to any of us. I use intuition, faith and persistence to keep trying to bring the different worlds together. I’m discovering that this is what comes natural to me. Merging these worlds, looking for solutions to make the most of a problem and connecting different ways of thinking to come up with something that surprises myself.

Hardware and design, photo Vera de Pont

Hardware and design, photo Vera de Pont

Calling

I started this project with the aspiration to become a modern hermit. But more and more I’m beginning to see that I am made for teamwork, that I love to inspire and be inspired. Nothing beats creating something new together. I suppose I’ll be the first part-time hermit.

Introducing Meditation Lab Experimenter Kit

For over a year I’ve been working on a wearable which will track physiological and environmental parameters during meditation. The idea was to improve the quality of your meditation by changing aspects of your environment e.g. light, sounds or temperature.

Silence Suit

In the spring of this year the opportunity arose to apply for an open call organised by the EU. The aim of that call is to generate knowledge about and new applications that address important issues concerning wearable technology today: data ethics and sustainability. Teams consisting of artist/designers and technologists were invited to apply for the WEARsustain open call.

I’m happy to announce here that my project is one of the 23 winners. For the next 6 months I’ll work with a great team of experts to realize this project. There’s what we’ll do.

DIY Science

We will create the Meditation Lab Experimenter Kit. This is a tool-set for studying, enhancing and sharing meditation experiences. The kit consists of a wearable and software. The main functionalities are:
1) Monitoring: A two piece garment, Silence Suit houses seven different biometric sensors and three environmental sensors.
2) Logging and analysing: A data server can store the data and allows the user to perform data analysis
3) Influencing: The wearable is part of an Internet of Things ecology allowing it to automatically optimise the environment for meditation
4) Sharing: Live or logged data can be used for to create custom output, in this case artistic visualizations for others to experience meditation.

The development will be staged around experiments. I will conduct 1-person meditation sessions in a controlled and customizable environment to explore the influence of light on meditation. Sensor data is combined with qualitative input about the session. The aim is to make 5 wearables. That way I can test the results in group experiments.

DIY Sustainability

I want to make sustainability as easy as possible for the user. The hardware consists of of-the-shelf, low cost and open source sensors. This makes replacement easy. The battery and micro-controller container will be 3D printed. This allows for easy adjustment and replacement. All schematics and patterns will become open-source. Users can keep working with the components and customize the suit.

Freeing Quantified Self

With regards to data ethics I believe that people have a right to own their data and that sharing should be opt-in only. That is why the software should function fully stand alone to protect the personal data. Basic statistical analyses let users explore their data. This makes it easy to independently make sense of the data. The kit democratizes doing scientific experiments and promotes data literacy.

Here’s a video I made together with Michel Gutlich about what we intend to do.

 

Don’t DI all Y

I realize that this is quite an ambitious plan for 6 months. That’s why I work with enthusiastic experts:
ProtoSpace will work on the dataserver.
Vera de Pont will design a new suit and sew the wearables in 3 different sizes.
Hans d’Achard will manage the system architecture and technology management of the software system.
Germán Bravo will provide expert knowledge and work on the machine learning.
Meike Kurella will be my intern for this period. She’ll be blogging about the process and help out with all kind of hands on tasks (sewing, soldering and help out with the experiments).

I’m very much looking forward to starting the project and learning how technology can support spirituality and health. Check this blog for the latest updates.

Logo-WEAR

europalogo

Bewaren

Bewaren

Bewaren

Bewaren

Bewaren

Bewaren

Maya cabin hackathon

Since this year my projects Meditation Lab and Silence Suit are part of Hack the Body program initiated by the art-science lab Baltan. They want to combine different programs so they suggested that Hack the Body should work together with people from the Age of Wonderland program.
That meant I could work with Branly again. I met him last year and that was a very impressive experience. Branly works with people using ancient Maya spirituality.
At the same time I could try out the Sensiks cabin. With this cabin you can create multi-sensory experiences. This is very similar to what I want to do in my Hermitage 3.0 project. (This will be a space where I can optimise meditation by changing the environment and influencing the senses.)
I brought my Silence Suit which already has a lot of working sensors. We could use the suit to log biometric and environmental data and see how they are influenced by the actuators in the Sensiks cabin.
The main aim of the hackathon was to explore if ancient Maya culture and rituals can be transferred to a high tech environment. The team members were David, Branly, Masha, later to be joined by Michel.

Day 1: exploring
The first afternoon Branly explained the Tuj/Temazcal. It is used in a purifying rebirth ritual. It is a small dome-like structure that is heated by hot stones and steam. The experience resembles a sauna. The rebirth ritual is multi-sensory too: touch (temperature, rubbing with twigs and salt), smell: different herbs and resins, taste: hot drinks (herbal infusions, cacao, honey). Sound: beating of a drum, like heartbeat. Vision is excluded mostly. The Tuj is dark except for red hot glowing stones. We decided to take this as a starting point for building our experience.

Tuj/Temazcal Wikipedia image

The Tuj is located on a beach or in the woods. A quiet, relaxing space. The ritual isn’t limited to experience in the dome. Preparations start days before. The space around the dome is also part of the ritual. For example the structure has a low door so you have to get on all fours to enter. This immediately takes you back to your childhood.

Sensiks control panel photo by Masha Ru

Sensiks control panel photo by Masha Ru

The Sensiks cabin has lots of different actuators: smell, airflow, light, sound, temperature and VR. Everybody had a test ride. We all felt the cabin was rather clinical. We wanted to connect it to the environment. Make it part of a bigger ritual like the Maya rebirth ritual.

Day 2: concept development
Next day we were joined by other Hack the Body participants and hackers. One of them was Michel with whom I collaborate on the Silence Suit.
The whole group had a very interesting discussion about what an experience actually is and where it is experienced. Is it meaningful to recreate an experience that can never match the real thing? The most interesting would be to create something that can’t be experienced in the real world. We wanted to work on changing our state of mind through bodily experiences.

Another level of conciousness... Photo by Masha Ru

Another level of conciousness… Photo by Masha Ru

Day 3: design and experiments
The Maya team was joined by technology wizard Michel. We decided that we did not want to mimic the actual sensory experiences but try to induce a state of mind, another level of consciousness. We used these keywords as our guideline: womb, unknown, subconscious, abstract and random, rhythm. The next step was to translate these abstract concepts into an experience in the cabin. Actuators that we could use: smoke, heat, sound, red and blue lights.

Michel at work Photo by Masha Ru

Michel at work Photo by Masha Ru

In the womb the developing child experiences the heartbeat and breathing of the mother. In the rebirth ritual they make use of a drum to simulate that heartbeat. We wanted to use our own heartbeat and breathing using life data from the Silence Suit. The Sensiks cabin would provide the feedback through sound and light and influence the user. We did little experiments to try out the effects of hearing your heartbeat and breathing, using smoke, scent, heating the cabin, using airflow, etc. It was promising.

Experimenting with sound Photo by Masha Ru

Experimenting with sound Photo by Masha Ru

Day 4: building and presentation
We wrote a scenario of the ritual which started and ended outside of the cabin. Our aim was to slow heart-rate by manipulating the feedback. Just like the peaceful heart-beat of the mother will quiet the unborn child. This is also a way to connect to the heartbeat of the cosmos.
From this came the idea to limit the experience to 260 heart-beats (there are 260 days in a Maya year). By slowing your heart-rate you can make the experience last longer. Four stages of 65 beats would offer different experiences aimed at first going inward and then returning to the outside again.

The ritual starts outside Photo by Masha Ru

The ritual starts outside Photo by Masha Ru

The main challenge was to get the Sensiks and Silent Suit systems working together and to time the events to the users’ heart-rate. We didn’t even have time to test the final scenario.
One of the jury members agreed to be the guinea-pig. And even though we didn’t manage to manipulate the heart-rate feedback we could hear her heart-beat slowing down as she progressed through the experience. Later she described that she could turn inwards and let go of the world outside the cabin. This was exactly what we were aiming for.

Presenting "260 beats womb reset" Photo by Stellarc

Presenting “260 beats womb reset” Photo by Stellarc

Some conclusions
For me the “260 beats womb reset” experience was a proof of concept. That you can actually change a state of mind through relatively simple means (light, sound, smell and airflow) using physiological data as input. An interesting insight is that it is important to make the experience bigger than the box. To create a larger ritual that is not isolated from the rest of the environment. The user must be lured and triggered to actually use the cabin, it must make sense in the context of life.

It was a great inspiration to work with Branly, David, Masha, Michel, Fred (the inventor of the Sensiks) and all the other participants. Michel did a great job of getting everything to work in time for the presentation and combining the systems. We’ve been able to create a spiritual experience using technology. It will be worthwhile exploring this further. I feel a step closer to realizing my Hermitage 3.0.

Edit >> In addition to this report there is an interview with me by Olga Mink from Baltan Laboratories all about the hackathon. Included there is a very nice video impression of the whole week.

Bewaren

Bewaren

Bewaren

Introducing Silence Suit

first sensors

Meditation stool with soft sensor and heart-rate sensor

For over a year I’ve been working on a meditation wearable. It measures biometric and environmental input. Its goals is to use the measurements to improve your meditation and use the data to generate artistic visualisations. The wearable is part of a bigger project Hermitage 3.0, a high-tech living environment for 21st century hermits (like me). Now that the wearable project is taking shape I’d like to tell a little about to process of creating it.

The sensors
I started with a simple but surprisingly accurate heart-rate sensor. It works with the Arduino platform. It uses an ear-clip and sends out inter beat intervals and beats per minute at every beat. With some additional code in Processing I can calculate heart-rate variability. These are already two important measures that can tell a lot about my state while meditating. Then I added galvanic skin response to measure the sweatiness of my skin, a nice indicator of stress or excitement. I added an analogue temperature sensor that I put on my skin to measure its temperature. Low skin temperature also indicates a state of relaxation. I also made a switch sensor that is attached to my meditation stool. Sitting on it indicates the start a session, getting up marks the end.
All sensors were connected with a wire to my computer but the aim was, of course, to make it wireless so I’d be free to move. But I could already see day to day changes in my measurements.

A little help from my friends
As things were becoming more complex I posted a request for help in a Facebook group. A colleague, Michel offered to help. We first looked at different ways to connect wirelessly. Bluetooth was a problem because it has very short range. Xbee also wasn’t ideal because you need a separate connector. We also made a version where we could write to an SD card on the device. But this of course doesn’t offer live data which was crucial for my plans. We finally settled for WiFi using the Sparkfun Thing Dev ESP8266. We were going to need a lot of analogue pins which the thing dev doesn’t offer. So we used the MCP3008 chip to supply 8 analogue i/o pins.

Overview of all the sensors

Overview of all the sensors

More is more
We could then increase the amount of sensors. We’ve added an accelerometer for neck position, replaced the analogue skin temperature sensor with a nice and accurate digital one. Around that time a wearable from another project was finished. It is a vest with resistive rubber bands that measures expansion of the chest and belly region. Using the incoming analogue values I can accurately calculate breath-rate and upper and lower respiration. Then it was time to add some environmental sensors. They give more context to for example GSR and skin temp readings. We’ve added room temperature and humidity, light intensity and RGB colour and air flow.

Vest with sensors

Vest with sensors

Environmental sensors

Environmental sensors

Seeing is believing
From the start I’ve made simple plots to get a quick insight into the session data. For now they don’t have an artistic purpose but are purely practical. At this point it is still essential to see if all sensors work well together. It’s also nice to get some general insight into how the body behaves during a meditation session.
Data is also stored in a structured text file. It contains minute by minute averages as well as means for the whole session.

Session data plot with legend

Session data plot with legend

I’ve also made a Google form to track my subjective experience of each session. I rate my focus, relaxation and perceived silence on a 7 point likert scale and there is a text field for a remark about my session.

Results from Google form: very relaxed but not so focussed...

Results from Google form: very relaxed but not so focussed…

Suit
I used the vest from the other project to attach the sensors to. But last week costume designer Léanne van Deurzen has made a first sample of the wearable. It was quite a puzzle for her and her interns to figure out the wiring and positioning of every sensor. I really like the look of this first design. It’s fits with the target group: high-tech hermits and it also is very comfortable to wear.

Upper and lower part of the suit

Upper and lower part of the suit

Back with extension where soft sensors to detect sitting will be placed

Back with extension where soft sensors to detect sitting will be placed

The future
The next step will be adding sensors for measuring hand position and pressure and a sound-level sensor.
Then we will have to make the processing board a bit smaller so it can fit in the suit. We can then start integrating the wiring and replacing it by even more flexible ones.
When all the sensors are integrated I can really start looking at the data and look for interesting ways to explore and understand it.
I’m also looking for ways to fund the making of 15 suits. That way I can start experiments with groups and find ways to optimise meditation by changing the environment.